• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Throughput optimization for the Robotic Cell Problem with Controllable Processing Times

    Thumbnail
    Date
    2017
    Author
    Al-Salem, Mohammed
    Kharbeche, Mohamed
    Metadata
    Show full item record
    Abstract
    In this paper, we present a MIP-based heuristic and an effective genetic algorithm for the Robotic Cell Problem with Controllable Processing Times (RCPCPT). This problem arises in modern automated manufacturing systems and requires simultaneously scheduling jobs, machines, and transportation devices in order to maximize the throughput or minimize the makespan. The RCPCPT is modeled as a flow shop problem with blocking constraints, a single transport robot, and controllable processing times. This latter feature of the model refers to the fact that the processing times are not fixed but vary linearly with the acceleration cost and therefore should be determined as part of the problem output. We formulate the problem as a nonlinear mixed-integer programming formulation and we use its linearized form to derive LP- A nd MIP-based heuristics. In addition, we proposed a genetic algorithm consistently yields near-optimal solution and it encompasses several novel features including, an original solution encoding as well as a mutation operator that requires iteratively solving MIPs in order to generate feasible processing times. Finally, we present a computational study for the proposed formulation, heuristics and genetic algorithm and we provide an empirical evidence of the effectiveness of the MIP-based heuristic for small instances and the genetic algorithm for large instances. EDP Sciences, ROADEF, SMAI.
    DOI/handle
    http://dx.doi.org/10.1051/ro/2016064
    http://hdl.handle.net/10576/17490
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]
    • Traffic Safety [‎163‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video