• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DLRT: Deep learning approach for reliable diabetic treatment

    Thumbnail
    Date
    2017
    Author
    Rathore, Heena
    Al-Ali, Abdulla
    Mohamed, Amr
    Du, Xiaojiang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Diabetic therapy or insulin treatment enables patients to control the blood glucose level. Today, instead of physically utilizing syringes for infusing insulin, a patient can utilize a gadget, for example, a Wireless Insulin Pump (WIP) to pass insulin into the body. A typical WIP framework comprises of an insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices with all connected wireless links. This takes into consideration more granular insulin conveyance while achieving blood glucose control. WIP frameworks have progressively benefited patients, yet the multifaceted nature of the subsequent framework has posed in parallel certain security implications. This paper proposes a highly accurate yet efficient deep learning methodology to protect these vulnerable devices against fake glucose dosage. Moreover, the proposal estimates the reliability of the framework through the Bayesian network. We conduct comparative study to conclude that the proposed method outperforms the state of the art by over 15% in accuracy achieving more than 93% accuracy. In addition, the proposed approach enhances the reliability of the overall system by 18% when only one wireless link is secured, and more than 90% when all wireless links are secured.
    DOI/handle
    http://dx.doi.org/10.1109/GLOCOM.2017.8255028
    http://hdl.handle.net/10576/17508
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video