• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Single and multi-component adsorption of aromatic acids using an eco-friendly polyaniline-based biocomposite

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Laabd, M.
    Chafai, H.
    Essekri, A.
    Elamine, M.
    Al-Muhtaseb, S.A.
    Lakhmiri, R.
    Albourine, A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The polyaniline coated with an agricultural waste (Argan nut shell) was prepared via in-situ chemical polymerization and used as an adsorbent material for removal of trimellitic (Tri), hemimellitic (Hemi) and pyromellitic (Pyro) acids from water in single and multi-component systems. The obtained results indicate that the adsorption process was strongly influenced by experimental parameters. The greatest adsorption efficiency was obtained at pH 6, adsorbent dose = 0.5 g/L, T = 25 °C, contact time = 90 min and initial concentration of 20 mg/L. The experimental data for single component systems fitted very well to pseudo-second-order kinetic model (R2 = 0.999). The intraparticle diffusion model suggests that the adsorption of Tri, Hemi and Pyro acids takes place in two successive stages representing the progressive adsorption and equilibrium. The single component adsorption equilibrium data were successfully described by the Langmuir isotherm model (R2 ≥ 0.995). The maximum monolayer adsorption capacity of polyaniline/Argan-nut-shell composite was found to be 209.64, 143.68 and 267.38 mg/g for Tri, Hemi and Pyro acids, respectively. In binary and ternary systems, the competitive behavior of the adsorption process was successfully predicted by an extended Langmuir isotherm model, with interaction parameters obtained from measured single data. Furthermore, the values of thermodynamic parameters (ΔH° ˃ 0, ΔS° ˃ 0 and ΔG ˂ 0) indicate that the adsorption processes were spontaneous, endothermic and physisorption in nature.
    DOI/handle
    http://dx.doi.org/10.1016/j.susmat.2017.04.004
    http://hdl.handle.net/10576/17516
    Collections
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video