• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy efficient EEG monitoring system for wireless epileptic seizure detection

    Thumbnail
    Date
    2017
    Author
    Hussein, Ramy
    Ward, Rabab
    Metadata
    Show full item record
    Abstract
    Wireless EEG monitoring systems have been successfully used for seizure detection outside clinical settings. The wireless EEG sensor nodes consume a considerable amount of battery energy to acquire, encode and transmit the data to the server side. In this paper, we introduce energy-efficient monitoring systems to increase the sensors' battery lifetime. Specifically, we propose a feature extraction method that is robust to artifacts and can effectively select the most discriminant features relevant to seizures. Second, we show how to use the missing at random (MAR) method to reduce the energy required at the sensor node for data transmission without compromising the seizure detection accuracy at the server side. Finally, we show how the expectation maximization (EM) method is used at the server side to accurately substitute the missing values. The performance of the proposed scheme is compared to those of the state-of-the art methods, and is shown to achieve less power consumption without compromising the seizure detection accuracy.
    DOI/handle
    http://dx.doi.org/10.1109/ICMLA.2016.86
    http://hdl.handle.net/10576/17621
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video