• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effect of forced convection and PCM on helmets' thermal performance in hot and arid environments

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Ghani, Saud
    ElBialy, Esmail Mohame Ali Ahmed
    Bakochristou, Foteini
    Mahmoud, Seifelislam
    Gamaledin, Ahmad
    Rashwan, Mohammed Mohammed
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Safety helmets are essential Personal Protecting Equipment (PPE) in all industrial and construction sites. When temperature and humidity levels are high, users' thermal comfort is adversely affected. This paper examines the utilization of forced convection and Phase Changing Material (PCM) to control the thermal comfort of helmet users. An experimentally validated three-dimensional Computational Fluid Dynamics (CFD) model of an industrial helmet and a human head was utilized to assess the helmet thermal performance under different harsh working environments. The standard k-? turbulence model was used to investigate the helmet cooling performance and to assess the user's thermal comfort at different ambient conditions. Energy and mass conservation equations were implemented in the calculation. The effect of solar radiation, forced convection and PCM integration at different incident wind speeds on the helmet's thermal performance was assessed. The effect of sweating on mass and heat transfer of the modeled human head skin was examined. Results concluded that forced convection decreased the maximum temperature on the helmet outer surface by about 10 C. The PCM embedded in the helmet proved to prolong the thermal comfort period. Findings highlighted that the heat generated from the head is the dominant factor affecting the melting time of the PCM.
    DOI/handle
    http://dx.doi.org/10.1016/j.applthermaleng.2016.09.142
    http://hdl.handle.net/10576/17628
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video