• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data enrichment in fine-grained classification of aquatic macroinvertebrates

    Thumbnail
    Date
    2017
    Author
    Raitoharju, Jenni
    Riabchenko, Ekaterina
    Meissner, Kristian
    Ahmad, Iftikhar
    Iosifidis, Alexandros
    Gabbouj, Moncef
    Kiranyaz, Serkan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The types and numbers of benthic macroinverte-brates found in a water body reflect water quality. Therefore, macroinvertebrates are routinely monitored as a part of freshwater ecological quality assessment. The collected macroin-vertebrate samples are identified by human experts, which is costly and time-consuming. Thus, developing automated identification methods that could partially replace the human effort is important. In our group, we have been working toward this goal and, in this paper, we improve our earlier results on automated macroinvertebrate classification obtained using deep Convolutional Neural Networks (CNNs). We apply simple data enrichment prior to CNN training. By rotations and mirroring, we create new images so as to increase the total size of the image database sixfold. We evaluate the effect of data enrichment on Caffe and MatConvNet CNN implementations. The networks are trained either fully on the macroinvertebrate data or first pretrained using ImageNet pictures and then fine-tuned using the macroinvertebrate data. The results show 3-6% improvement, when the enriched data are used. This is an encouraging result, because it significantly narrows the gap between automated techniques and human experts, while it leaves room for future improvements as even the size of the enriched data, about 60000 images, is small compared to data sizes typically required for efficient training of deep CNNs.
    DOI/handle
    http://dx.doi.org/10.1109/CVAUI.2016.20
    http://hdl.handle.net/10576/17649
    Collections
    • Center for Advanced Materials Research [‎1505‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video