• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal Design of Multiplant Cogeneration Systems with Uncertain Flaring and Venting

    Thumbnail
    Date
    2017
    Author
    Tovar-Facio, Javier
    Eljack, Fadwa
    Ponce-Ortega, Jose M.
    El-Halwagi, Mahmoud M.
    Metadata
    Show full item record
    Abstract
    This paper presents an optimization approach for designing cogeneration systems using flares and vents under abnormal conditions from different industrial plants. The aim of the proposed approach is to enhance resource conservation by utilizing waste flares and vents to produce power and heat while reducing the negative environmental impact associated with discharging these streams into the atmosphere. A nonlinear optimization model is proposed to determine the optimal design of the cogeneration system that maximizes the net profit of the system. The model addresses the inevitable uncertainties associated with the abnormal situations leading to venting and flaring. A random generations approach based on historical data and a computationally efficient algorithm are introduced to facilitate design under uncertainty and to enable the assessment of different scenarios and solutions with various levels of risk. A case study is presented to show the applicability of the proposed model and the feasibility of using cogeneration systems to mitigate flaring and venting and to reduce the environmental impact and operating costs
    DOI/handle
    http://dx.doi.org/10.1021/acssuschemeng.6b02033
    http://hdl.handle.net/10576/17652
    Collections
    • Chemical Engineering [‎1272‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video