• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Time-series forecasting of Bitcoin prices using high-dimensional features: a machine learning approach

    View/Open
    Main Article (1.375Mb)
    Date
    2020-01-01
    Author
    Mudassir, Mohammed
    Bennbaia, Shada
    Unal, Devrim
    Hammoudeh, Mohammad
    Metadata
    Show full item record
    Abstract
    © 2020, Springer-Verlag London Ltd., part of Springer Nature. Bitcoin is a decentralized cryptocurrency, which is a type of digital asset that provides the basis for peer-to-peer financial transactions based on blockchain technology. One of the main problems with decentralized cryptocurrencies is price volatility, which indicates the need for studying the underlying price model. Moreover, Bitcoin prices exhibit non-stationary behavior, where the statistical distribution of data changes over time. This paper demonstrates high-performance machine learning-based classification and regression models for predicting Bitcoin price movements and prices in short and medium terms. In previous works, machine learning-based classification has been studied for an only one-day time frame, while this work goes beyond that by using machine learning-based models for one, seven, thirty and ninety days. The developed models are feasible and have high performance, with the classification models scoring up to 65% accuracy for next-day forecast and scoring from 62 to 64% accuracy for seventh–ninetieth-day forecast. For daily price forecast, the error percentage is as low as 1.44%, while it varies from 2.88 to 4.10% for horizons of seven to ninety days. These results indicate that the presented models outperform the existing models in the literature.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087554750&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00521-020-05129-6
    http://hdl.handle.net/10576/17685
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video