• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DDI: Drones Detection and Identification using Deep Learning Techniques

    Thumbnail
    View/Open
    Sara Al-Emadi_ OGS Approved Thesis.pdf (1.781Mb)
    Date
    2021-01
    Author
    AL-EMADI, SARA ABDULRAZAQ
    Metadata
    Show full item record
    Abstract
    Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. Besides their useful applications, an alarming concern in regards to the physical infrastructure security, safety and privacy arose due to the potential of their use in malicious activities. To address this problem, wework towards the proposed solution by the following twofold contribution, first we propose a novel solution that automates the drone detection and identification processes using drone's acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. Therefore, we aim to fulfil this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio clips using a state of the art deep learning model known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact our proposed hybrid dataset has on drone detection. The second contribution is laying the foundation for the next step of the anti-drone proposed system which is focused around swarm drones localisation and tracking using data fusion of audio and radio frequency signals using deep learning techniques. This is made possible through the design of a novel swarm of drones simulator. Our findings prove the advantage of using deep learning techniques with acoustic data for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.
    DOI/handle
    http://hdl.handle.net/10576/17716
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video