• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Urban air pollution monitoring system with forecasting models

    Thumbnail
    Date
    2016
    Author
    Shaban, Khaled Bashir
    Kadri, Abdullah
    Rezk, Eman
    Metadata
    Show full item record
    Abstract
    A system for monitoring and forecasting urban air pollution is presented in this paper. The system uses low-cost air-quality monitoring motes that are equipped with an array of gaseous and meteorological sensors. These motes wirelessly communicate to an intelligent sensing platform that consists of several modules. The modules are responsible for receiving and storing the data, preprocessing and converting the data into useful information, forecasting the pollutants based on historical information, and finally presenting the acquired information through different channels, such as mobile application, Web portal, and short message service. The focus of this paper is on the monitoring system and its forecasting module. Three machine learning (ML) algorithms are investigated to build accurate forecasting models for one-step and multi-step ahead of concentrations of ground-level ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2). These ML algorithms are support vector machines, M5P model trees, and artificial neural networks (ANN). Two types of modeling are pursued: 1) univariate and 2) multivariate. The performance evaluation measures used are prediction trend accuracy and root mean square error (RMSE). The results show that using different features in multivariate modeling with M5P algorithm yields the best forecasting performances. For example, using M5P, RMSE is at its lowest, reaching 31.4, when hydrogen sulfide (H2S) is used to predict SO2. Contrarily, the worst performance, i.e., RMSE of 62.4, for SO2 is when using ANN in univariate modeling. The outcome of this paper can be significantly useful for alarming applications in areas with high air pollution levels. 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
    DOI/handle
    http://dx.doi.org/10.1109/JSEN.2016.2514378
    http://hdl.handle.net/10576/17924
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video