• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solar co-production of samarium and syngas via methanothermal reduction of samarium sesquioxide

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Bhosale, Rahul R.
    Kumar, Anand
    AlMomani, Fares
    Ghosh, Ujjal
    Dardor, Dareen
    Bouabidi, Zineb
    Ali, Manar
    Yousefi, Shiva
    AlNouss, Ahmed
    Anis, Mohammad Saad
    Usmani, Mohammad Hamza
    Ali, Moustafa H.
    Azzam, Reem S.
    Banu, Aliya
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This paper reports the thermodynamic analysis of the solar methanothermal reduction of Sm2O3 for the co-production of Sm and syngas in (a) Sm-Syngas open cycle, and (b) Sm-Syngas closed cycle. As per the chemical thermodynamic equilibrium modeling, the conversion of Sm2O3 into Sm increase with the increase in the CH4/Sm2O3 ratio and 100% conversion is possible at 2528 K if CH4/Sm2O3 ratio is equal to 3 is used. Exergy efficiency analysis of both open and closed cycles indicate that the QSm2O3-reduction, Qsolar, Qre-radiation, and Qquench increases with the increase in the CH4/Sm2O3 ratio. Likewise, WFC-Ideal-1, QFC-Ideal-1, and HHVsyngas-1 also increases with the upsurge in the CH4/Sm2O3 ratio. Similar observations were realized in case of Sm-Syngas closed cycle. The ?exergy (33.91%) and ?solar-to-fuel (45.93%) of the Sm-Syngas open cycle was observed to be maximum in case of CH4/Sm2O3 ratio = 3. As one of the applications, Sm was utilized toward splitting of H2O and CO2 together for the production of syngas via Sm-Syngas closed cycle. At similar operating conditions, the ?exergy-closed (45.22%) and ?solar-to-fuel-closed (61.24%) of the Sm-Syngas closed cycle was observed to be higher as compared to the Sm-Syngas open cycle. Furthermore, it was observed that, these efficiency values can be increased significantly due to the utilization of higher values of C and recycling of the heat rejected by the quench unit and H2O/CO2 splitting reactor.
    DOI/handle
    http://dx.doi.org/10.1016/j.enconman.2016.01.032
    http://hdl.handle.net/10576/18106
    Collections
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video