• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    HW/SW co-design based implementation of Gas discrimination

    Thumbnail
    View/Open
    qfarc.2014.ITPP1115.pdf (98.53Kb)
    Date
    2016
    Author
    Ali, Amine Ait Si
    Amira, Abbes
    Bensaali, Faycal
    Benammar, Mohieddine
    Bermak, Amine
    Metadata
    Show full item record
    Abstract
    A gas discrimination system is mainly made of two parts, the sensing part and the processing part. As an alternative solution to pure software or hardware implementation of the processing part of a gas identification system, this paper proposes a gas discrimination system and its implementation on the Zynq system on chip platform using hardware/software co-design approach. In addition, the recommended system uses principal component analysis for dimensionality reduction, binary decision tree for classification and a 4�4 in-house gas sensor array for sensing. Moreover, k-nearest neighbors classifier is also used and compared with decision tree. MATLAB is used for simulation and validation before the final implementation on the Zynq. Algorithms are implemented using high level synthesis and different optimization directives are applied. Hardware implementation results on the Zynq show that real-time performances can be achieved for proposed e-nose system using hardware/software co-design approach with a single ARM processor running at 667 MHz and the programmable logic running at 142 MHz.
    DOI/handle
    http://dx.doi.org/10.1109/ASAP.2016.7760806
    http://hdl.handle.net/10576/18200
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video