• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sugar-based novel niosomal nanocarrier system for enhanced oral bioavailability of levofloxacin

    Thumbnail
    Date
    2016
    Author
    Imran, Muhammad
    Shah, Muhammad Raza
    Ullah, Farhat
    Ullah, Shafi
    Elhissi, Abdelbary M. A.
    Nawaz, Waqas
    Ahmad, Farid
    AbdulSadiq
    Ali, Imdad
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Context: Vesicular systems have attracted great attention in drug delivery because of their amphiphilicity, biodegradability, non-toxicity and potential for increasing drug bioavailability. Objective: A novel sugar-based double-tailed surfactant containing renewable block was synthesized for preparing niosomal vesicles that could be exploited for Levofloxacin encapsulation, aiming to increase its oral bioavailability. Materials and methods: The surfactant was characterized by 1H NMR, mass spectroscopy and Fourier transform infrared spectroscopy (FT-IR). Its biocompatibility was studied against cell cultures and human blood hemolysis. In vivo acute toxicity was evaluated in mice. The vesicle morphology, size, drug-excipients interaction and entrapment efficiency (EE) were examined using atomic force microscope (AFM), dynamic light scattering (DLS), FT-IR and HPLC. Oral bioavailability studies of Levofloxacin in surfactant-based niosomal formulation were carried out using rabbits and plasma samples were analyzed using HPLC. Results and discussion: Vesicles were spherical in shape and the size was 190.31 � 4.51 nm with a polydispersity index (PDI) of 0.29 � 0.03. The drug EE in niosomes was 68.28 � 3.45%. When applied on cell lines, high cell viability was observed even after prolonged exposure at high concentrations. It caused 5.77 � 1.34% hemolysis at 1000 ?g/mL and was found to be safe up to 2000 mg/kg. Elevated Levofloxacin plasma concentration was achieved when delivered with novel vesicles. Conclusion: The surfactant was demonstrated to be safe and effective as carrier of Levofloxacin. The study suggests that this sugar-based double-tailed nonionic surfactant could be promising nano-vesicular system for delivery and enhancing oral bioavailability of the hydrophobic Levofloxacin.
    DOI/handle
    http://dx.doi.org/10.1080/10717544.2016.1214991
    http://hdl.handle.net/10576/18211
    Collections
    • Pharmacy Research [‎1418‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video