• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integration of Energy and Wastewater Treatment Alternatives with Process Facilities to Manage Industrial Flares during Normal and Abnormal Operations: Multiobjective Extendible Optimization Framework

    Thumbnail
    Date
    2016
    Author
    Kazi, Monzure Khoda
    Eljack, Fadwa
    Elsayed, Nesreen A.
    El-Halwagi, Mahmoud M.
    Metadata
    Show full item record
    Abstract
    This work reports an extendible multiobjective optimization framework to find the optimal configuration of energy utilization and wastewater treatment facility of the process. It incorporates two sustainable energy integration alternative tools, i.e., a cogeneration (COGEN) unit and thermal membrane distillation (TMD), as available add-ons to the process during normal operation and for abnormal situation management. The objective of the framework is to reduce the environmental footprint of abnormal flares by enumerating and assessing possible process configurations in order to manage flares from uncertain sources and to utilize unused energy resources for wastewater treatment. The core of this optimization framework is developed using a genetic algorithm and its objective function is aimed at minimizing the total annualized cost which accounts for the fixed and operating costs of the system, the value of produced coproducts (i.e., power, wastewater treatment savings, income from permeate), and taxes/credits associated with greenhouse gases. An ethylene process plant is used to demonstrate the applicability of the developed framework. The results of different alternative configurations demonstrate the economic, energetic, and/or environmental trade-offs of integrating TMD and the COGEN unit with the process plant both for flare mitigation and during normal operation. It was seen that the total annualized cost (TAC) dropped around 35% and the payback period reduced from 7.01 to 4.61 years when an integrated process plant (ethylene plant), utility unit (COGEN), and wastewater treatment facility (TMD) was considered instead of separate divisions. Moreover, utility savings were achieved up to 8% and annual incomes from coproducts were increased around 20% for the integrated ethylene plant, COGEN, and TMD unit. Besides, prolific recycling opportunities of unused flare streams and treated wastewater were identified to make some valuable products from waste streams.
    DOI/handle
    http://dx.doi.org/10.1021/acs.iecr.5b03938
    http://hdl.handle.net/10576/18315
    Collections
    • Chemical Engineering [‎1202‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video