• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis and characterisation of Co2+-incorporated ZnO nanoparticles prepared through a sol-gel method

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Ba-Abbad, Muneer M.
    Takriff, Mohd S.
    Benamor, Abdelbaki
    Mohammad, Abdul Wahab
    Metadata
    Show full item record
    Abstract
    The properties of ZnO nanoparticles were modified by doping them with cobalt ions (Co2+) in various compositions through a sol-gel route. The Co2+-doped ZnO nanoparticles were characterised using X-ray diffraction (XRD), UV/Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and zeta potential measurements. A hexagonal wurtzite-phase structure of Co2+-doped ZnO was observed, with a slight decrease in particle size as the Co2+ doping concentration increased. Absorption by Co2+-doped ZnO was found to shift to longer wavelengths, towards the visible region, which was also confirmed by photoluminescence analysis. The band gap of the Co2+-doped ZnO samples decreased from 3.19 to 2.66 eV as the content of dopant Co2+ increased from 0.0 to 1.0 wt.%. The zeta potential results showed slight effects of Co2+ doping compared with undoped ZnO, indicating that Co2+ doping influences the optical properties and morphology of pure ZnO nanoparticles. The photocatalytic activity of the Co2+-doped ZnO samples was evaluated for the removal of Congo red dye from aqueous solution under solar radiation. The Co2+-doped ZnO samples showed higher effective removal of the dye using the optimal doping of 0.50 wt.%, which produced higher efficiency (about 96%, compared with 80% for pure ZnO).
    DOI/handle
    http://dx.doi.org/10.1016/j.apt.2016.08.009
    http://hdl.handle.net/10576/18325
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video