• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Instrumentation of Flow-Through USP IV Dissolution Apparatus to Assess Poorly Soluble Basic Drug Products: a Technical Note

    Thumbnail
    Date
    2016
    Author
    Paprskarova, Alice
    Mozna, Petra
    Oga, Enoche F.
    Elhissi, Abdelbary
    Alhnan, Mohamed A.
    Metadata
    Show full item record
    Abstract
    Supersaturation and precipitation are common limitations encountered especially with poorly soluble basic drugs. The aims of this work were to explore the pattern of dissolution and precipitation of poorly soluble basic drugs using a United States Pharmacopoeia (USP) IV dissolution apparatus and to compare it to the widely used USP II dissolution apparatus. In order to investigate the influence of gastric emptying time on bioavailability, tables of two model drugs (dipyridamole 100 mg and cinnarizine 15 mg) were investigated and pH change from 1.2 to 6.8 were achieved after 10, 20 or 30 min using USP II or USP IV dissolution apparatuses. Using USP II, dipyridamole and cinnarizine concentrations dropped instantly as a result of drug precipitation with drug crystals evident in the dissolution vessel. At pH change times of 10, 20 and 30 min, the total amount of dissolved drug was dependent on pH change time. Using USP IV, at a flow rate of 8 ml/min, it was possible to have comparable release to agitation at 50 rpm using USP II suggesting that comparable hydrodynamic forces are possible. No drop in drug percentage occurs as the dissolved fraction was readily emptied from the flow cell, preventing drug accumulation in the dissolution medium. However, a negligible percentage of drug release took place following pH change. In conclusion, the use of the flow-through cell dissolution provided laminar flow, use of realistic fluid volumes and avoided precipitation of dissolved drug fraction in the gastric phase as it is discharged before pH change
    DOI/handle
    http://dx.doi.org/10.1208/s12249-015-0444-4
    http://hdl.handle.net/10576/20542
    Collections
    • Pharmacy Research [‎1426‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video