• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Subspace based network community detection using sparse linear coding

    Thumbnail
    Date
    2016
    Author
    Mahmood, Arif
    Small, Michael
    Metadata
    Show full item record
    Abstract
    Information mining from networks by identifying communities is an important problem across a number of research fields including social science, biology, physics, and medicine. Most existing community detection algorithms are graph theoretic and lack the ability to detect accurate community boundaries if the ratio of intra-community to inter-community links is low. Also, algorithms based on modularity maximization may fail to resolve communities smaller than a specific size if the community size varies significantly. We propose a fundamentally different community detection algorithm based on the fact that each network community spans a different subspace in the geodesic space. Therefore, each node can only be efficiently represented as a linear combination of nodes spanning the same subspace (Fig. 1). To make the process of community detection more robust, we use sparse linear coding with ?1 norm constraint. In order to find a community label for each node, sparse spectral clustering algorithm is used. The proposed community detection technique is compared with more than ten state of the art methods on two benchmark networks (with known clusters) using normalized mutual information criterion. Our proposed algorithm outperformed existing methods with a significant margin on both benchmark networks. 2016 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICDE.2016.7498395
    http://hdl.handle.net/10576/22446
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video