• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of a combined approach for the treatment of carbide slurry and capture of CO2

    Thumbnail
    View/Open
    ajeassp.2016.449.457.pdf (510.8Kb)
    Date
    2016
    Author
    Hasan, Shereen
    El-Naas, Muftah H.
    Metadata
    Show full item record
    Abstract
    The aim of this study is to evaluate the potential use of electrocoagulation in the treatment of carbide slurry, a wastewater generated during the production of acetylene, and in the capture of carbon dioxide. An electrochemical batch reactor was used to carry out several experiments at different current densities, ranging between 140-290 A/m2. Pure air and a mixture of 10% of carbon dioxide in air were injected into the reactor system to ensure good mixing and solution homogeneity. Samples were collected from the treated effluent and analyzed for Total Hardness (TH), Total Dissolved Solids (TDS) and Chemical Oxygen Demand (COD). Response Surface Methodology (RSM) was conducted to design a matrix of experiments to optimize the conditions for the treatment process and determine the optimum response in terms of water treatment and CO2 capture efficiency. For the pure air system, the overall optimum conditions were found to be 12, 27.5 and 284 A/m2 as pH, temperature and current density, respectively. The percent reduction efficiencies were 47.5, 47.8 and 71.4% for COD, TH and TDS, respectively. For the air-CO2 system, the overall optimum conditions were 12, 35 and 213.5 A/m2 for pH, temperature and current density, respectively; the reduction efficiencies were 42, 75 and 74% for COD, TH and TDS, respectively. 2016 Shereen Hasan and Muftah H. El-Naas.
    DOI/handle
    http://dx.doi.org/10.3844/ajeassp.2016.449.457
    http://hdl.handle.net/10576/22673
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video