• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A parallel patient treatment time prediction algorithm and its applications in hospital queuing-recommendation in a big data environment

    Thumbnail
    View/Open
    A_Parallel_Patient_Treatment_Time_Prediction_Algorithm_and_Its_Applications_in_Hospital_Queuing-Recommendation_in_a_Big_Data_Environment.pdf (12.86Mb)
    Date
    2016
    Author
    Chen, Jianguo
    Li, Kenli
    Tang, Zhuo
    Bilal, Kashif
    Li, Keqin
    Metadata
    Show full item record
    Abstract
    Effective patient queue management to minimize patient wait delays and patient overcrowding is one of the major challenges faced by hospitals. Unnecessary and annoying waits for long periods result in substantial human resource and time wastage and increase the frustration endured by patients. For each patient in the queue, the total treatment time of all the patients before him is the time that he must wait. It would be convenient and preferable if the patients could receive the most efficient treatment plan and know the predicted waiting time through a mobile application that updates in real time. Therefore, we propose a Patient Treatment Time Prediction (PTTP) algorithm to predict the waiting time for each treatment task for a patient. We use realistic patient data from various hospitals to obtain a patient treatment time model for each task. Based on this large-scale, realistic dataset, the treatment time for each patient in the current queue of each task is predicted. Based on the predicted waiting time, a Hospital Queuing-Recommendation (HQR) system is developed. HQR calculates and predicts an efficient and convenient treatment plan recommended for the patient. Because of the large-scale, realistic dataset and the requirement for real-time response, the PTTP algorithm and HQR system mandate efficiency and low-latency response. We use an Apache Spark-based cloud implementation at the National Supercomputing Center in Changsha to achieve the aforementioned goals. Extensive experimentation and simulation results demonstrate the effectiveness and applicability of our proposed model to recommend an effective treatment plan for patients to minimize their wait times in hospitals.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2016.2558199
    http://hdl.handle.net/10576/22891
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video