• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy conversion of heat from abandoned oil wells to mechanical refrigeration - Transient analysis and optimization

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Energy conversion of heat from abandoned oil wells to mechanical refrigeration - Transient analysis and optimization.pdf (3.642Mb)
    Date
    2012-12
    Author
    Al-Khawaja, Mohammed
    K. Sleiti, Ahmad
    A. Al-Ammari, Wahib
    Metadata
    Show full item record
    Abstract
    This study investigates the potential of using the geothermal energy from abandoned oils in a novel three-loop system; geothermal, power and cooling loops to produce cooling effect. The geothermal loop drives the power and cooling loops of a thermo-mechanical refrigeration (TMR) system consisting of expander-compressor units (ECUs). The system advantages lie in its simple, flexible, and low-cost design as well as in its ability to be driven by a low-temperature heat source (as low as 60 °C). To evaluate the performance of the system, comprehensive models are developed including transient model for the abandoned oil well (geothermal loop) in spatial and time domains and thermodynamic and optimization models for the entire three-loop system. The effects of the temperature variation of the geofluid over operation time, the working fluids, the high pressure and the temperatures of the heat source and sink are investigated. Results show that at realistic and conservative conditions, the geofluid temperature considerably decreases for the first four months of operation (by an average of 30 °C) and tends to be constant after half a year of operation. However, the geofluid temperature still high enough to drive the proposed geothermal TMR system over the full operation period. Among 43 investigated refrigerants, R1234ze(E) has higher efficiency, lower Pumping Work Ratio (PWR), and requires a smaller size of the heat exchangers. Using the genetic algorithm optimization method with R1234ze(E) as working fluid in both power and cooling loops, a maximum power loop efficiency of 6.3% and COP of 5.3 were obtained at a high pressure of 29 bar (in the power loop) with minimal expander diameter of 64, compressor diameter of 171 mm, and 18 expander-compressor units.
    DOI/handle
    http://dx.doi.org/10.1016/j.geothermics.2021.102269
    http://hdl.handle.net/10576/24708
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video