• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comprehensive Signaling Profiles Reveal Unsuspected Functional Selectivity of δ-Opioid Receptor Agonists and Allow the Identification of Ligands with the Greatest Potential for Inducing Cyclase Superactivation

    Thumbnail
    View/Open
    DOR profiles and Cyclase Superactivation. ACS paper. (2.972Mb)
    Date
    2021-10-08
    Author
    Mansour, Ahmed
    Nagi, Karim
    Dallaire, Paul
    Lukasheva, Viktoriya
    Le Gouill, Christian
    Bouvier, Michel
    Pineyro, Graciela
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Prolonged exposure to opioid receptor agonists triggers adaptations in the adenylyl cyclase (AC) pathway that lead to enhanced production of cyclic adenosine monophosphate (cAMP) upon withdrawal. This cellular phenomenon contributes to withdrawal symptoms, hyperalgesia and analgesic tolerance that interfere with clinical management of chronic pain syndromes. Since δ-opioid receptors (DOPrs) are a promising target for chronic pain management, we were interested in finding out if cell-based signaling profiles as generated for drug discovery purposes could inform us of the ligand potential to induce sensitization of the cyclase path. For this purpose, signaling of DOPr agonists was monitored at multiple effectors. The resulting signaling profiles revealed marked functional selectivity, particularly for Met-enkephalin (Met-ENK) whose signaling bias profile differed from those of synthetic ligands like SNC-80 and ARM390. Signaling diversity among ligands was systematized by clustering agonists according to similarities in Emax and Log(τ) values for the different responses. The classification process revealed that the similarity in Gα/Gβγ, but not in β-arrestin (βarr), responses was correlated with the potential of Met-ENK, deltorphin II, (d-penicillamine2,5)-enkephalin (DPDPE), ARM390, and SNC-80 to enhance cAMP production, all of which required Ca2+ mobilization to produce this response. Moreover, superactivation by Met-ENK, which was the most-effective Ca2+ mobilizing agonist, required Gαi/o activation, availability of Gβγsubunits at the membrane, and activation of Ca2+ effectors such as calmodulin and protein kinase C (PKC). In contrast, superactivation by (N-(l-tyrosyl)-(3S)-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)-l-phenylalanyl-l-phenylalanine (TIPP), which was set in a distinct category through clustering, required activation of Gαi/o subunits but was independent of the Gβγdimer and Ca2+ mobilization, relying instead on Src and Raf-1 to induce this cellular adaptation.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85115804501&origin=inward
    DOI/handle
    http://dx.doi.org/10.1021/acsptsci.1c00019
    http://hdl.handle.net/10576/26754
    Collections
    • Medicine Research [‎1759‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video