• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    THE EFFECT OF SINGLE WALLED CARBON NANOTUBES ON THE THERMOELECTRIC PROPERTIES OF BISMUTH TELLURIDE

    Thumbnail
    View/Open
    Mohamed Alameldien_OGS Approved Thesis.pdf (2.161Mb)
    Date
    2022-01
    Author
    MOHAMED, MOHAMED ALAMELDIN ALI
    Metadata
    Show full item record
    Abstract
    Modern new technologies, including carbon nanomaterials, polymers performed electronically, and their nanocomposites enhance the performance of thermoelectric materials. Thermoelectrical responses can be improved by simultaneously tuning different properties within the material, such as nano structuring, nanocomposites, and doping. The purpose of this work is to determine the effect of single walled carbon nanotubes (SWCNT) on the thermoelectric properties of an n-type bismuth telluride alloy. Mechanical alloying and compaction sintering techniques are used to prepare SWCNT/Bi2Te2.55Se0.45 composites. Experiments are conducted with different concentrations (0.01, 0.025, 0.1 and 0.5 weight percent) and duration times of 20 hours. The results of the thermoelectric characteristics of SWCNT indicates that ball milling technique influences both its structure and agglomeration. The CNT filler is added during the step of mechanical milling, as this preserves SWCNT structure and increases its electrical conductivity. Additionally, it is demonstrated that SWCNT milling technique improves the Seebeck coefficient. While an increase in thermal conductivity is expected as a result of the high electrical conductivity due to increased scattering at the new interfaces, a significant drop in the lattice thermal conductivity is attained. The figure-of-merit for the optimal sample with 0.1 percent SWCNT added in 20 milling hours has improved by 13% at room temperature indicating a value of 0.3, and by 32% at 156.9°C indicating the highest ZT value of 0.6.
    DOI/handle
    http://hdl.handle.net/10576/27284
    Collections
    • Materials Science & Technology [‎63‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video