• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Efficient Audio Encryption Scheme Based on Finite Fields

    Thumbnail
    View/Open
    Paper (1.472Mb)
    Date
    2021-01-01
    Author
    Shah, Dawood
    Shah, Tariq
    Hazzazi, Muhammad Mazyad
    Haider, Muhammad Imran
    Aljaedi, Amer
    Hussain, Iqtadar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Finite fields are well-studied algebraic structures with enormous efficient properties which have applications in the fields of cryptology and coding theory. In this study, we proposed a lossless binary Galois field extension-based efficient algorithm for digital audio encryption. The proposed architecture hired a special type of curve in the diffusion module which depends on efficient elliptic curve arithmetic operations. So, it generates good quality pseudo-random numbers (PRN) and with slight computational efforts, it produces optimum diffusion in the encrypted audio files. For the confusion module, a novel construction mechanism of block cipher has been employed which includes prominent arithmetic operations of binary Galois field inversion and multiplication operations. The suggested scheme generates multiple substitution boxes (S-boxes) by using a higher-order Galois field. Thus, the replacement with multiple S-boxes generates effective perplexity in the data and provides additional security to the ciphered audio. The investigational outcomes through different analyses and time complexity demonstrated the ability of the technique to counter various attacks. Furthermore, as a consequence of a rapid and simple application of the binary finite field in hardware and software, the proposed scheme is more appropriate to be applied for data security.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117311891&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3119515
    http://hdl.handle.net/10576/27373
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video