• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Direct inactivation of SARS-CoV-2 by low level blue photobiomodulation LED at 470, 454 and 450 nm.

    Thumbnail
    View/Open
    Journal_Biophotonics_Laser (1.008Mb)
    Date
    2022-02-06
    Author
    Zupin, Luisa
    Gratton, Rossella
    Milani, Margherita
    Clemente, Libera
    Fontana, Francesco
    Ruscio, Maurizio
    Crovella, Sergio
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Blue light has been already reported as able to counteract different types of microorganisms including Gram-positive and Gram-negative bacteria, fungi and viruses, especially the enveloped ones. It has been reported that both blue and visible light can efficiently impact SARS-CoV-2 by affecting its ability to replicate in in vitro cellular models of infection. In this study, blue light at 450, 454 and 470 nm was tested on SARS-CoV-2 to evaluate the residual viral infectious potential on Vero E6, Caco-2 and Calu-3 cells, after the irradiation of viral particles. Following 12' of irradiation at 40 mW/cm , a drastic block of viral amplification was observed. Indeed, at 7 days post-irradiation/infection the viral load was the same as the one measured 1 day post-irradiation/infection, and cellular viability was maintained showing similar levels to the noninfected control cells. Taken together our results indicate that blue LED lamps can be considered as a cheap and convenient tool for SARS-CoV-2 disinfection.
    DOI/handle
    http://dx.doi.org/10.1002/jbio.202100375
    http://hdl.handle.net/10576/27375
    Collections
    • Biological & Environmental Sciences [‎932‎ items ]
    • COVID-19 Research [‎849‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video