• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel oral formulations of metformin in semi-solid matrices: Design, characterization and in vitro dissolution testing

    Thumbnail
    View/Open
    qfarf.2012.BMP47.pdf (119.6Kb)
    Date
    2012
    Author
    Ali-Adib, Sandi
    Abuhelwa, Ahmad
    Younes, Husam M
    Metadata
    Show full item record
    Abstract
    Objectives: To formulate and evaluate oral dosage forms of metformin hydrochloride (MH) having sustained-release properties that would also increase MH bioavailability and address the shortcomings in the currently marketed sustained-release tablets. Methods: MH micronized powder was dispersed in molten polymeric matrices composed of Gelucire 50/13 and various proportions of high molecular weight hydrophilic polymers, hydrophobic oily semisolid excipients, and mucoadhesive polymeric materials. The MH loaded matrices were filled in hard gelatin capsules (HGC) each containing 500 mg MH and were subsequently characterized using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The prepared HGC were subjected to content uniformity and in vitro dissolution testing according to the USP-35 compendium requirements. The dissolution data were compared to instant and sustained-release marketed tablets. The effect of incorporating various proportions of the semisolid excipients on MH dissolution release rate, were also investigated. Results: MH content of the prepared HGC ranged between 96 to 103%. All the prepared semisolid filled HGC resulted in extended-release profiles of MH that lasted between 5 to 11 hours and demonstrated a release pattern which typically follows the release from mixes of triglycerides with polyethylene glycol esters of fatty acids. The incorporation of mucoadhesive excipients like carbomer to the Gelucire 50/13-MH semisolid matrices extended the release of MH from 5 hours initially to 9 hours as a result of the formation of a gel layer around the matrix. However, the incorporation of different hydrophilic excipients like PEG35000 and Gelucire 44/14 along with the mucoadhesive excipients sustained the release of MH up to 11 hours. XRD analysis of the MH prepared matrices demonstrated minor changes in the crystalline nature of MH. Depending on the loading ratios and the nature of the semisolid matrices used, DSC analysis revealed the changes in MH crystallinity to be from 100 to 23%. Conclusion: HGC formulated using semisolid matrices showed promising results in extending the release of MH. However, bioavailability studies to test the ability of such Gelucire based HGC of MH to improve its bioavailability and in vivo residence times are future plans.
    URI
    https://doi.org/10.5339/qfarf.2012.BMP47
    DOI/handle
    http://hdl.handle.net/10576/27951
    Collections
    • Pharmacy Research [‎1389‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video