• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Desorption of chloramphenicol from ordered mesoporous carbon-alginate beads: Effects of operating parameters, and isotherm, kinetics, and regeneration studies

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Ahammad, N.A.
    Zulkifli, M.A.
    Ahmad, M.A.
    Hameed, B.H.
    Mohd, Din A.T.
    Metadata
    Show full item record
    Abstract
    This study has investigated the desorption of an emerging contaminant, known as chloramphenicol (CPC), from ordered mesoporous carbon (OMC)-alginate beads. The effects of initial concentration, operating temperature, and a selection of eluents (water, ethanol, and sodium chloride (NaCl)) on the whole desorption process were analysed. The desorption efficiency was found to decrease with increasing temperature, an indication for a favourable desorption process at a lower temperature range. NaCl was the most effective eluent for the CPC desorption process, followed by ethanol and water. The use of 1 M NaCl has resulted in the highest desorption efficiency of 84.7%. Redlich-Peterson and Freundlich isotherm models fitted well to the CPC desorption experimental data. The desorption kinetic data for ethanol and NaCl as eluents fitted well to the pseudo-second order kinetic model. Meanwhile, distilled water as an eluent was best fitted to the pseudo-first order kinetic model. The CPC adsorption efficiency began to notably decrease from 78.9% to 48.5% after five consecutive adsorption/desorption cycles. Similarly, the desorption efficiency began to decrease from 76.0% in the first cycle down to 35.2% in the fifth cycle. These findings demonstrated that the OMC-alginate beads are a very promising adsorbent with excellent desorption and reusability characteristics towards the targeted antibiotic, CPC.
    DOI/handle
    http://dx.doi.org/10.1016/j.jece.2020.105015
    http://hdl.handle.net/10576/28514
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video