• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Hybrid Photo-Electro Catalytic Conversion of Carbon dioxide Using CuO-MgO Nanocomposite

    Thumbnail
    Date
    2022
    Author
    Shabil Sha. Mizaj
    Maurya, Muni Raj
    Shafath, Sadiya
    Hijazi, Dima
    Alahmed, Johaina
    Alahmed, Hanin
    Sleim, Mostafa H.
    Kumar, Bijandra
    Abdullah, Aboubakr M.
    Sadasivuni, Kishor Kumar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Reducing carbon dioxide (CO2) into fuels accompanied by renewable resources has been under research since it helps to decrease CO2 levels in the atmosphere. The most suited source is solar energy which is generous and sustainable. In this aspect, photocatalysis (PC) and photo electrocatalysis (PEC) are favorable methods to utilize solar energy for CO2 reduction to carbonaceous fuels. A PEC system is more efficient than a PC system because of the ability to separate photogenerated holes and electrons for higher efficiency. The photo-electrochemical CO2 reduction reaction (PEC-CO2RR) can be considered as an artificial photosynthetic system that stores solar energy and stabilizes CO2 levels in the atmosphere. Here CuO–MgO nanocomposite (NC) is used for the effective PEC reduction of CO2 into viable carbonaceous fuels. A simple and scalable sol–gel process was used for synthesizing the CuO–MgO NC. The synthesized NC’s structural, morphological and elemental analysis was performed using XRD, Raman spectroscopy, SEM and EDX. Optical properties were evaluated using UV spectroscopy. The electrochemical and PEC analysis was carried out to study the catalytic behavior of CuO–MgO towards CO2 reduction by the cyclic voltammetry method. The CuO–MgO NC exhibited significantly improved PEC-CO2RR performance compared to electrochemical reduction alone. Moreover, the CuO–MgO NC displayed high structural stability and durability, which benchmark its potential towards PEC reduction to CO2 into carbonaceous fuels.
    DOI/handle
    http://dx.doi.org/10.1007/s11244-022-01579-5
    http://hdl.handle.net/10576/28535
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Chemical Engineering [‎1196‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video