• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rational Synthesis of Mixed Metal Oxide Clusters Supported on a Partially Etched MAX Phase for Efficient Electrocatalytic CO2 Conversion

    Thumbnail
    Date
    2022
    Author
    Sliem, Mostafa H.
    Kannan, Karthik
    Maurya, Muni Raj|Jlassi, Khouloud
    Sadasivuni, Kishor Kumar
    Kumar, Bijandra
    Abdullah, Aboubakr M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The precise fabrication of an efficient catalyst for CO2 conversion into beneficial hydrocarbons is particularly interesting for industrial and environmental applications. Herein, a three-dimensional (3D) hybrid of metal oxide clusters on a partially etched MAX phase (MxOy/MAX hybrid) is presented for efficient electrochemical reduction (eCR) of CO2 into renewable carbonaceous fuels. A scalable hydrothermal method is adopted for the controlled in-situ growth of CuO and NiO nanoparticle on a partially etched MAX phase framework. The structural, elemental and morphological analysis is performed by XRD, XPS, FTIR, SEM and TEM characterization. The CO2 eCR study on MxOy/MAX hybrid was conducted under ambient conditions. The 3D MxOy/MAX hybrid exhibited significantly improved eCR performance compared to the pristine MAX phase. The 3D MxOy/MAX scaffold with an intercalated network of mixed metal oxides affords a high surface area, ion diffusion, increased redox- active sites and improved conductivity that facilitate excellent catalytic activity. Moreover, the MxOy/MAX hybrid shows high structural stability and durability.
    DOI/handle
    http://dx.doi.org/10.1007/s11244-021-01528-8
    http://hdl.handle.net/10576/28538
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video