• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonenzymatic Electrochemical Sensor Based on CuO-MgO Composite for Dopamine Detection

    Thumbnail
    Date
    2021
    Author
    Paramparambath, Sreedevi
    Shafath, Sadiyah
    Maurya, Muni Raj
    Cabibihan, John-John
    Al-Ali, Abdulazi
    Malik, Rayaz A.
    Sadasivuni, Kishor Kumar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Dopamine plays an essential role in the proper functioning of the brain and the body. A change in the level of dopamine can lead to disorders related to the nervous system. Thus, detection of dopamine levels may aid in the diagnosis and treatment of various diseases. Enzymatic electrochemical sensors have been extensively studied for the detection of dopamine because they exhibit excellent selectivity and reliability. However, enzymatic electrochemical sensors suffer from several unavoidable drawbacks such as complex enzyme purification process, weak enzyme immobilization on the electrode, enzyme denaturation and low stability. On the other hand, non-enzymatic sensors are promising alternatives that offer high sensitivity, high electrocatalytic activity, long term stability and eliminate the problems associated with enzymes. Herein, we present a non-enzymatic nanocomposite (NC) of metal oxides (CuO-MgO) for efficient electrochemical detection of dopamine. Scalable sol-gel method is adopted for the controlled growth of CuO-MgO NC. The structural, elemental and morphological analysis is performed by XRD, Raman spectroscopy, and TEM characterization, respectively. The electrochemical analysis was carried out to study the electrocatalytic behavior of CuO-MgO in the detection of dopamine, by cyclic voltammetry and chronoamperometric methods. The electrocatalytic behavior was investigated at different scan rates and for different dopamine concentrations in artificial sweat solution. The CuO-MgO NC catalyst exhibited a sensitivity of $69~\mu $ Acm-2mM-1 and the detection limit is computed to be $6.4~\mu \text{M}$ in the linear range of 10- $100~\mu \text{M}$. Moreover, the NC apprehended a high degree of selectivity towards other bio-compounds present in the sweat, and no possible interfering cross-reaction from these species was observed. The as-synthesized CuO-MgO NC offered high sensitivity, selectivity, fast response and stability, which benchmarked its potential for dopamine sensing.
    DOI/handle
    http://dx.doi.org/10.1109/JSEN.2021.3112009
    http://hdl.handle.net/10576/28556
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Chemical Engineering [‎1196‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video