• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study of performance, combustion, and emissions parameters of DI-diesel engine fueled with algae biodiesel/diesel/n-pentane blends

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Study of performance, combustion, and emissions parameters of DI-diesel engine fueled with algae biodieseldieseln-pentane blends.pdf (10.50Mb)
    Date
    2021
    Author
    Elkelawy, Medhat
    Bastawissi, Hagar Alm-Eldin
    El Shenawy, E.A.
    Taha, Mohammed
    Panchal, Hitesh
    Sadasivuni, Kishor Kumar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Biodiesel extracted from Scenedesmus obliquus algae through transesterification was used in the current study. Due to the disadvantages of using pure biodiesel in engines, it was used as B50 (a blend of 50% diesel and 50% biodiesel). To enhance engine performance, n-pentane was used in different extents of 5, 10, and 15 ml per liter as an enhancer additive. Through performance tests, it was found that 15 ml of n-pentane per liter was the best addition as it caused an increase in the brake thermal efficiency of 7.1% and a decrease in brake specific fuel consumption of 6.4% compared to the elegant B50. Whereas for exhaust gases, there was an increase in nitrogen oxides, which was associated with the significant increase in exhaust temperature and the high oxygen content present in B50. In comparison, hydrocarbons emission decreased by 7.2% compared to B50 in contrast to carbon dioxide which increased by 22.3% over B50. The carbon monoxide and oxygen concentrations of the exhaust gases also decreased by 17.35% and 9.5%, respectively compared to B50. The results obtained indicated that there are a significant improvements in pressure evolution and heat release data, which depend on the role of the mixed fuel addition of n-pentane.
    DOI/handle
    http://dx.doi.org/10.1016/j.ecmx.2020.100058
    http://hdl.handle.net/10576/28576
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video