• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microstructural, tribological and compression behaviour of Copper matrix reinforced with Graphite-SiC hybrid composites

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Jamwal, A.
    Seth, P.P.
    Kumar, D.
    Agrawal, R.
    Sadasivuni, Kishor Kumar
    Gupta, P.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Metal Matrix Composites (MMCs) are generating a wide and varied range of interest in the recently developed materials because of their high applicability in the industries. Copper matrix composites have rich properties like high thermal conductivity, high temperature resistance, high corrosion resistance and high weldability which makes them promising and demanding material for heat exchangers, electrical components and automoblies. Graphite and Silicon Carbide are the most economical reinforcements to improve the wear characteristics of pure copper. Present study concentrates on preparation of Copper-Graphite-Silicon Carbide hybrid metal matrix composite by stir casting technique. XRD analysis of composites show that there is no intermediate reaction occuring between copper and reinforcement particles. Micrographs of composites revealed the uniform distribution of reinforcement particles in copper matrix. A good interfacial bonding between Copper and Graphite-Silicon Carbide particles is found. Hardness of composites is tested by Vickers hardness tester and it is found that hardness of composites decreases with increase in graphite content. Wear tests were performed on Pin-on-Disc test rig. It is found that wear rate is decreasing with increase in reinforcement content. The maximum wear resistance is found at 8 wt% reinforcement content. Compressive strength of composites is tested using Universal testing machine and showed a decrease in value with increase in graphite content. It is spontaneously expected that present composite will be highly beneficial in structural and mechanical applications.
    DOI/handle
    http://dx.doi.org/10.1016/j.matchemphys.2020.123090
    http://hdl.handle.net/10576/28635
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video