• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review

    Thumbnail
    View/Open
    Graphene quantum dot based materials for sensing bio-imaging and energy storage applications a review.pdf (3.743Mb)
    Date
    2020
    Author
    Kumar, Y.R.
    Deshmukh, K.
    Sadasivuni, Kishor Kumar
    Pasha, S.K.K.
    Metadata
    Show full item record
    Abstract
    Graphene quantum dots (GQDs) are an attractive nanomaterial consisting of a monolayer or a few layers of graphene having excellent and unique properties. GQDs are endowed with the properties of both carbon dots (CDs) and graphene. This review addresses applications of GQD based materials in sensing, bioimaging and energy storage. In the first part of the review, different approaches of GQD synthesis such as top-down and bottom-up synthesis methods have been discussed. The prime focus of this review is on green synthesis methods that have also been applied to the synthesis of GQDs. The GQDs have been discussed thoroughly for all the aspects along with their potential applications in sensors, biomedicine, and energy storage systems. In particular, emphasis is given to popular applications such as electrochemical and photoluminescence (PL) sensors, electrochemiluminescence (ECL) sensors, humidity and gas sensors, bioimaging, lithium-ion (Li-ion) batteries, supercapacitors and dye-sensitized solar cells. Finally, the challenges and the future perspectives of GQDs in the aforementioned application fields have been discussed.
    DOI/handle
    http://dx.doi.org/10.1039/d0ra03938a
    http://hdl.handle.net/10576/28651
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Enhanced block-sparse adaptive Bayesian algorithm based control strategy of superconducting magnetic energy storage units for wind farms power ripple minimization 

      Hasanien, H. M.; Turky, R. A.; Tostado-Veliz, M.; Muyeen, S.M.; Jurado, F. ( Elsevier Ltd , 2022 , Article)
      This article presents a novel enhanced block-sparse adaptive Bayesian algorithm (EBSABA) to fully control proportional-integral (PI) controllers of superconducting magnetic energy storage (SMES) units. The main goal is to ...
    • Thumbnail

      Medium voltage flywheel energy storage system employing dual three-phase induction machine with machine-side series-connected converters 

      Daoud, M.I.; Abdel-Khalik, A. S.; Elserougi, A.; Massoud, Ahmed; Ahmed, S. ( Institution of Engineering and Technology , 2014 , Conference)
      Flywheels as energy storage systems are good candidates for numerous power system applications such as voltage support, serving fluctuating loads, frequency regulation and renewable energy utilization. Most of these ...
    • Thumbnail

      Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material 

      Trigui A.; Karkri M.; Krupa I. (2014 , Article)
      Phase change material (PCM) composites based on low-density polyethylene (LDPE) with paraffin waxes were investigated in this study. The composites were prepared using a meltmixing method with a Brabender-Plastograph. The ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video