• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sawdust-based superhydrophobic pellets for efficient oil-water separation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Latthe, S.S.
    Kodag, V.S.
    Sutar, R.S.
    Bhosale, A.K.
    Nagappan, S.
    Ha, C. S.
    Sadasivuni, Kishor Kumar
    Kulal, S.R.
    Liu, S.
    Xing, R.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Severe water pollution by means of oil is the major issue worldwide. Emerging materials like superhydrophobic surfaces have shown immense potential to control this issue. Herein we utilized low-cost Sawdust-Polystyrene (SD ? PS) composite and developed a facile strategy to prepare a free-standing superhydrophobic pellet for efficient oil-water separation. More importantly, the simple recovery of the absorbed oil is feasible. To achieve crack-free, regular and robust superhydrophobic SD ? PS pellet, the concentration of polystyrene, the quantity of sawdust in polymer solution and thickness of the pellet was optimised. The surface morphology analysis confirmed an adequate binding between sawdust and polystyrene in composite structure with formation of micro-voids less than 100 ?m that facilitated efficient oil-water separation. The superhydrophobic pellet exhibited oil-water separation efficiency higher than 90% for the oils and organic liquids like hexane, kerosene, diesel and coconut oil with excellent separation cycles around 30. The mechanically durable superhydrophobic SD ? PS pellet could separate oil from muddy as well as warm water, which are more suitable for industrial applications.
    DOI/handle
    http://dx.doi.org/10.1016/j.matchemphys.2020.122634
    http://hdl.handle.net/10576/28662
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video