• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study of diesel-biodiesel blends combustion and emission characteristics in a CI engine by adding nanoparticles of Mn (II) supramolecular complex

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Elkelawy, M.
    Etaiw, S.E.-D.H.
    Bastawissi, H.A.-E.
    Marie, H.
    Elbanna, A.
    Panchal, H.
    Sadasivuni, Kishor kumar
    Bhargav, H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The supramolecular complex (SC1) [Mn(EIN)4(NCS)2] was synthesized and characterized as a new nanosized emulsion additive to improve the fuel incineration and emission formation behavior of a diesel-biodiesel blends-fueled CI engine. X-ray diffraction of one crystal, a spectroscopy technique and transmission electron microscopy (TEM) have been entirely examined for the structure formation of SC1. Adding 50, 100, and 150 ppm of SC1 with hydrogen peroxide (H2O2) is used to prepare the nanofluids emulsions. Nanosized SC1 with an average particle size of 15.25 nm is used as the heterogeneous medium for generating •OH radicals and O2 which are essential for the improvement of diesel-biodiesel blends fuel reactivity in a CI engine cylinder. Three Diesel-Biodiesel Blends with SC1 nanofluid emulsions have been prepared by blending 49% of diesel #1 fuel, 49% waste cooking oil biodiesel, 2% of SC1 nanofluid emulsion with hydrogen peroxide (H2O2) by the motorized agitator. The CI engine features are examined with all three SC1 nanofluid emulsions and the findings are discussed under separate conditions with conventional diesel and diesel-biodiesel blends. The operations of the diesel engine in the presence of SC1 nanofluid emulsions improve the thermal brake efficiency by 14.8–20.52% for diesel fuel. Furthermore, for SC1 nanofluid emulsions, CO and HC emissions are drastically decreased by 48.19–62.05% and 15.34–60.94% compared to pure diesel fuel, respectively. It is observed that the NOx emissions for all SC1 nanofluids combustion increase by 30.41–67.62% and the smoke emissions reduce by 32–44.27% as has been compared with pure Diesel.
    DOI/handle
    http://dx.doi.org/10.1016/j.apr.2019.09.021
    http://hdl.handle.net/10576/28679
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video