Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers
Date
2017Author
Deshmukh, K.Ahamed, M.B.
Deshmukh, R.R.
Pasha, S.K.K.
Sadasivuni, Kishor Kumar
Ponnamma, D.
AlMaadeed, Mariam Al-Ali
...show more authors ...show less authors
Metadata
Show full item recordAbstract
In this study, novel three-phase polymer nanocomposites comprising of polyvinylidene fluoride (PVDF), titanium dioxide (TiO2) nanoparticles and graphene oxide (GO) were prepared using colloidal blending. The PVDF/TiO2/GO nanocomposites were characterized by FTIR, XRD, TGA, optical microscopy, SEM, AFM and contact angle analysis. The dielectric properties of these three-phase polymer nanocomposites were investigated using broadband dielectric spectroscopy in the frequency range 50 Hz–20 MHz and temperature in the range 40–150 °C. The FTIR and XRD results infer good interaction between the constituents of nanocomposites. The microscopic studies infer homogeneous dispersion and distribution of TiO2 nanoparticles and GO within the PVDF matrix. A notable improvement in the thermal stability of PVDF was observed by the addition of TiO2 and GO as hybrid fillers. The dielectric performance of PVDF/TiO2/GO nanocomposite films was significantly improved as compared to PVDF/TiO2 (90/10) nanocomposite film. The dielectric constant increases from 18.57 (50 Hz, 150 °C) for PVDF/TiO2 (90/10) nanocomposite film to 165.16 (50 Hz, 150 °C) for PVDF/TiO2/GO nanocomposite film containing 7 wt% TiO2 and 3 wt% GO loading. In addition, the dielectric loss also increases from 1.71 (50 Hz, 150 °C) for PVDF/TiO2 (90/10) nanocomposite film to 3.68 (50 Hz, 150 °C) for PVDF/TiO2/GO nanocomposite film containing 7 wt% TiO2 and 3 wt% GO loading. These intriguing properties of PVDF/TiO2/GO nanocomposites could shed some light on the incorporation of different types of hybrid fillers in a suitable polymer matrix for the development of novel three-phase nanocomposites as intelligent materials for embedded passive applications.
Collections
- Center for Advanced Materials Research [1449 items ]
- Mechanical & Industrial Engineering [1457 items ]
Related items
Showing items related by title, author, creator and subject.
-
Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications
Deshmukh, K.; Ahamed, M.B.; Deshmukh, R.R.; Pasha, S.K.K.; Sadasivuni, Kishor Kumar; Polu, A.R.; Ponnamma, D.; AlMaadeed, Mariam Al-Ali; Chidambaram, K.... more authors ... less authors ( Springer New York LLC , 2017 , Article)In this study, biopolymer nanocomposites of cellulose acetate (CA) and Al2O3 nanoparticles (Al2O3 NPs) were successfully obtained using solution blending method. The effect of Al2O3 NPs loading on the microstructure, ... -
Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material
Deshmukh, Kalim; Ahamed, M. Basheer; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Deshmukh, Rajendra R.; Pasha, S. K. Khadheer; AlMaadeed, Mariam Al-Ali; Chidambaram, K.... more authors ... less authors ( Springer Netherlands , 2016 , Article)Novel flexible dielectric composites composed of polyvinyl alcohol (PVA), polyethylene glycol (PEG), and graphene oxide (GO) with high dielectric constant and low dielectric loss have been developed using facile and ... -
Self-standing elastomeric composites based on lithium ferrites and their dielectric behavior
Soreto Teixeira, S.; Graça, M. P. F.; Dionisio, M.; Ilcíkova, M.; Mosnacek, J.; Spitalsky, Z.; Krupa, I.; Costa, L. C.... more authors ... less authors ( American Institute of Physics Inc. , 2014 , Article)Lithium ferrite (LiFe5O8) is an attractive material for technological applications due to its physical properties, which are significantly dependent on the preparation method and raw materials. In this work, LiFe5O8 ...