• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanoporous Polymeric Materials For Co2 Capture And Separation

    Thumbnail
    View/Open
    qfarc.2014.EEPP0693.pdf (97.08Kb)
    Date
    2014
    Author
    Ullah, Ruh
    Yavuz, Cafer T
    Atilhan, Mert
    Metadata
    Show full item record
    Abstract
    Control of carbon dioxide emissions without significant penalties requires effective CO2 scrubbing from point sources, such as fossil fuel burning power plants, cement factories and steel making. Capturing process is the most costly; hence the research is directed to finding solutions to it. Efficient CO2 scrubbing without a significant energy penalty remains an outstanding challenge for fossil fuel-burning industry where aqueous amine solutions are still widely used. Porous materials have long been evaluated for next generation CO2 adsorbents. Porous polymers, robust and inexpensive, show promise as feasible materials for the capture of CO2 from warm exhaust fumes. Nanoporous polymeric materials show considerable CO2 uptakes and are likely to replace monoethanol amine (MEA) solutions for industrial CO2 capture. We report recently developed nanoporous covalent organic polymers (COPs), which show significant capacities and selectivities for CO2. To name a few, COP-1 shows 5.6 g/g CO2 uptake at 200 bar and 45 °C, COP-2 shows a CO2/H2 selectivity of over 10:1 and COP-33 1.8 g/g at CO2 uptake at 200 bar 50 °C with a CO2/H2 selectivity of 3:1. These results point to an ideal nanoporous structure to be made from a highly porous, inexpensive, physisorptive solid, which is chemically modified with amine functionalities.
    URI
    https://doi.org/10.5339/qfarc.2014.EEPP0693
    DOI/handle
    http://hdl.handle.net/10576/29635
    Collections
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video