• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Production Of Size-selected Copper Nanoclusters For Petroleum Refinery Applications

    Thumbnail
    View/Open
    qfarc.2014.EEPP0580.pdf (97.30Kb)
    Date
    2014
    Author
    Ayesh, Ahmad
    Metadata
    Show full item record
    Abstract
    Atomic nanoclusters exhibit large surface to volume ratio which enhances their ability to interact with external materials, thus, they can be utilized efficiently for catalysts and gas sensing applications. Copper (Cu) nanoclusters are a promising system for gas sensing applications, mainly because of its sensitivity and selectivity for H2S [1,2]. In this work, Cu nanoclusters were synthesized using the dc magnetron sputtering and gas-condensation technique [3,4]. The dependence of nanoclusters' size on various source parameters such as the inert gas flow rate, and aggregation length has been investigated in detail. The results show that as the inert gas flow rate increases, the nanocluster size decreases. These results could be understood as a result of nanocluster production by three-body collision mechanism. This work demonstrates the ability of tuning the nanoclusters' size and yield by a proper optimization of the source operation conditions. Keywords: Cu nanoclusters, sputtering, nanocluster size selection, inert gas condensation, nanocluster formation mechanism
    URI
    https://doi.org/10.5339/qfarc.2014.EEPP0580
    DOI/handle
    http://hdl.handle.net/10576/29686
    Collections
    • Mathematics, Statistics & Physics [‎804‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video