• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smart and Secure Blockchain-based Healthcare System Using Deep Q-Learning

    Thumbnail
    Date
    2021
    Author
    Al-Marridi A.Z.
    Mohamed A.
    Erbad A.
    Guizani M.
    Metadata
    Show full item record
    Abstract
    Healthcare is one of the top priorities in modern society to provide better health facilities. Therefore, investments in health care systems increased rapidly, aligned with the population growth rate. Besides, the data generated from the health sectors is incomparable with the amount of data generated in other industries. Therefore, managing data processing and sharing between various healthcare stakeholders is essential. Blockchain is an emerging technology used heavily in various domains, including the healthcare sector, to facilitate secure data sharing. However, mapping the content requirements with the blockchain's configuration was not addressed, especially when addressing security, delays, and cost in healthcare systems. This paper proposes a blockchain-based intelligent Healthcare system (BC-iHealth) to address the mapping between the blockchain entities' needs with the blockchain's configuration while maximizing the security and minimizing the overall delay and cost. The optimization model is formulated as a Markov Decision Process (MDP) and solved intelligently using a Deep Q-Learning approach. Simulation results confirm that the Deep Q-Learning optimizes the BC-iHealth system and outperforms two benchmark strategies: random selection and exhaustive search. 2021 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/WF-IoT51360.2021.9595416
    http://hdl.handle.net/10576/30056
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...
    • Thumbnail

      A cooperative Q-learning approach for online power allocation in femtocell networks 

      Saad H.; Mohamed A.; Elbatt T. ( IEEE , 2013 , Conference)
      In this paper, we address the problem of distributed interference management of cognitive femtocells that share the same frequency range with macrocells using distributed multiagent Q-learning. We formulate and solve three ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video