• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Weighted Trustworthiness for ML Based Attacks Classification

    Thumbnail
    Date
    2020
    Author
    Chkirbene Z.
    Erbad A.
    Hamila R.
    Gouissem A.
    Mohamed A.
    Guizani M.
    Hamdi M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Recently, machine learning techniques are gaining a lot of interest in security applications as they exhibit fast processing with real-time predictions. One of the significant challenges in the implementation of these techniques is the collection of a large amount of training data for each new potential attack category, which is most of the time, unfeasible. However, learning from datasets that contain a small training data of the minority class usually produces a biased classifiers that have a higher predictive accuracy for majority class(es), but poorer predictive accuracy over the minority class. In this paper, we propose a new designed attacks weighting model to alleviate the problem of imbalanced data and enhance the accuracy of minority classes detection. In the proposed system, we combine a supervised machine learning algorithm with the node1 past information. The machine learning algorithm is used to generate a classifier that differentiates between the investigated attacks. Then, the system stores these decisions in a database and exploits them for the weighted attacks classification model. Thus, for each attack class, the weight that maximizes the detection of the minority classes will be computed and the final combined decision is generated. In this work, we use the UNSW dataset to train the supervised machine learning model. The simulation results show that the proposed model can effectively detect intrusion attacks and provide better accuracy, detection rates and lower false alarm rates compared to state-of-the art techniques.1In this document we will use the words 'node' to represent computing, storage, physical, and virtual machines. 2020 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/WCNC45663.2020.9120706
    http://hdl.handle.net/10576/30096
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...
    • Thumbnail

      A cooperative Q-learning approach for online power allocation in femtocell networks 

      Saad H.; Mohamed A.; Elbatt T. ( IEEE , 2013 , Conference)
      In this paper, we address the problem of distributed interference management of cognitive femtocells that share the same frequency range with macrocells using distributed multiagent Q-learning. We formulate and solve three ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video