• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    QoE-Aware Resource Allocation for Crowdsourced Live Streaming: A Machine Learning Approach

    Thumbnail
    Date
    2019
    Author
    Haouari F.
    Baccour E.
    Erbad A.
    Mohamed A.
    Guizani M.
    Metadata
    Show full item record
    Abstract
    Driven by the tremendous technological advancement of personal devices and the prevalence of wireless mobile network accesses, the world has witnessed an explosion in crowdsourced live streaming. Ensuring a better viewers quality of experience (QoE) is the key to maximize the audiences number and increase streaming providers' profits. This can be achieved by advocating a geo-distributed cloud infrastructure to allocate the multimedia resources as close as possible to viewers, in order to minimize the access delay and video stalls. Moreover, allocating the exact needed resources beforehand avoids over-provisioning, which may lead to significant costs by the service providers. In the contrary, under-provisioning might cause significant delays to the viewers. In this paper, we introduce a prediction driven resource allocation framework, to maximize the QoE of viewers and minimize the resource allocation cost. First, by exploiting the viewers locations available in our unique dataset, we implement a machine learning model to predict the viewers number near each geo-distributed cloud site. Second, based on the predicted results that showed to be close to the actual values, we formulate an optimization problem to proactively allocate resources at the viewers proximity. Additionally, we will present a trade-off between the video access delay and the cost of resource allocation. 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICC.2019.8761591
    http://hdl.handle.net/10576/30110
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...
    • Thumbnail

      A cooperative Q-learning approach for online power allocation in femtocell networks 

      Saad H.; Mohamed A.; Elbatt T. ( IEEE , 2013 , Conference)
      In this paper, we address the problem of distributed interference management of cognitive femtocells that share the same frequency range with macrocells using distributed multiagent Q-learning. We formulate and solve three ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video