• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance Comparison of classification algorithms for EEG-based remote epileptic seizure detection in Wireless Sensor Networks

    Thumbnail
    Date
    2014
    Author
    Abualsaud K.
    Mahmuddin M.
    Saleh M.
    Mohamed A.
    Metadata
    Show full item record
    Abstract
    Identification of epileptic seizure remotely by analyzing the electroencephalography (EEG) signal is very important for scalable sensor-based health systems. Classification is the most important technique for wide-ranging applications to categorize the items according to its features with respect to predefined set of classes. In this paper, we conduct a performance evaluation based on the noiseless and noisy EEG-based epileptic seizure data using various classification algorithms including BayesNet, DecisionTable, IBK, J48/C4.5, and VFI. The reconstructed and noisy EEG data are decomposed with discrete cosine transform into several sub-bands. In addition, some of statistical features are extracted from the wavelet coefficients to represent the whole EEG data inputs into the classifiers. Benchmark on widely used dataset is utilized for automatic epileptic seizure detection including both normal and epileptic EEG datasets. The classification accuracy results confirm that the selected classifiers have greater potentiality to identify the noisy epileptic disorders. 2014 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/AICCSA.2014.7073258
    http://hdl.handle.net/10576/30153
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video