• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive energy-aware encoding for DWT-based wireless EEG tele-monitoring system

    Thumbnail
    Date
    2013
    Author
    Hussein R.
    Awad A.
    El-Sherif A.A.
    Mohamed A.
    Alghoniemy M.
    Metadata
    Show full item record
    Abstract
    Recent technological advances in wireless body sensor networks (WBSN) have made it possible for the development of innovative medical applications to improve health care and the quality of life. Electroencephalography (EEG)-based applications lie at the heart of these promising technologies. However, excess power consumptions may render some of these applications inapplicable. Wireless (EEG) tele-monitoring systems performing encoding and streaming over energy-hungry wireless channels are limited in energy supply. Hence, energy efficient methods are needed to improve such applications. In this work, an embedded EEG encoding system that is able to adjust its computational complexity is proposed; which lead to energy consumption according to channel variations. We analyze the computational complexity for a typical Discrete Wavelet Transform (DWT)-based encoding system. We also propose a power-distortion-compression ratio (P-D-CR) framework. Using the developed P-D-CR framework, the encoder effectively reconfigures the complexity of the control parameters to match the energy constraints while retaining maximum reconstruction quality. Results show that by using the proposed framework, higher reconstruction accuracy can be obtained regardless of the power budget of the utilized hardware. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/DSP-SPE.2013.6642598
    http://hdl.handle.net/10576/30167
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video