• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study on boil-off gas (Bog) minimization and recovery strategies from actual baseload lng export terminal: Towards sustainable lng chains

    Thumbnail
    Date
    2021
    Author
    Bouabidi Z.
    Almomani F.
    Al-Musleh E.I.
    Katebah M.A.
    Hussein M.M.
    Shazed A.R.
    Karimi I.A.
    Alfadala H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Boil-off Gas (BOG) generated at the liquefied natural gas (LNG) export terminal causes negative economic and environmental impacts. Thus, the objective of this study is to develop and evaluate various handling schemes to minimize and/or recover the generated BOG from an actual baseload LNG export terminal with a capacity of 554 million standard cubic feet per day (MMSCFD) of natural gas feed. The following three main scenarios were assessed: JBOG re-liquefaction, LNG sub-cooling, and lean fuel gas (LFG) reflux. For the LNG subcooling, two sub-cases were considered; standalone subcooling before LNG storage and subcooling in the prevailing liquefaction cycle. Steadystate models for these scenarios were simulated using Aspen Plus? based on a shortcut approach to quickly evaluate the proposed scenarios and determine the promising options that should be considered for further rigorous analysis. Results indicated that the flow of attainable excess LNG is 0.07, 0.03, and 0.022 million metric tons per annum (MTA) for the standalone LNG sub-cooling, LNG sub-cooling in the main cryogenic heat exchanger (MCHE), and both LFG-refluxing and jetty boil-off gas (JBOG) liquefaction, respectively. This in turn results in a profit of 24.58, 12.24, 8.14, and 7.63 million $/year for the LNG price of 7$ per Metric Million British Thermal Unit (MMBtu) of LNG.
    DOI/handle
    http://dx.doi.org/10.3390/en14123478
    http://hdl.handle.net/10576/30279
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video