• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Treatment of waste gas contaminated with dichloromethane using photocatalytic oxidation, biodegradation and their combinations

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Almomani F.
    Rene E.R.
    Veiga M.C.
    Bhosale R.R.
    Kennes C.
    Metadata
    Show full item record
    Abstract
    The treatment of waste gas (WG) containing dichloromethane (DCM) using advanced oxidation processes (AOPs) [UV and UV-TiO2], biological treatment (BT), and their combination (AOPs-BT) was tested. AOP tests were performed in an annular photo-reactor (APHR), while BT was conducted in a continuous stirred tank bioreactor (CSTBR). The effects of gas flow rate (Qgas), inlet DCM concentration ([DCM]i), residence time (τ), photocatalyst loading (PH-CL) and % relative humidity (% RH) on the AOPs performance and the removal of DCM (%DCMr) were studied and optimized. The UV process exhibited %DCMr ≤ 12.5 % for tests conducted at a [DCM]i ≤ 0.45 g/m3, Qgas of 0.12 m3/h and τ of 27.6 s, respectively, and < 4 % when the [DCM]i ≥ 4.2 g/m3. The UV-TiO2 achieved a %DCMr ≥ 71 ± 1.5 % at Qgas of 0.06 m3/h, [DCM]i of 0.45 g/m3, τ of 55.2 s, PH-CL of 10 g/m2, and %RH of 50, respectively. The BT process removed ∼97.6 % of DCM with an elimination capacity (EC) of 234.0 g/m3·h. Besides, the high %DCMr of ∼98.5 % in the UV-BT and 99.7 % in the UV-TiO2-BT processes confirms AOPs-BT as a promising technology for the treatment of recalcitrant compounds present in WG.
    DOI/handle
    http://dx.doi.org/10.1016/j.jhazmat.2020.123735
    http://hdl.handle.net/10576/30290
    Collections
    • Chemical Engineering [‎1201‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video