• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction the performance of multistage moving bed biological process using artificial neural network (ANN)

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Almomani F.
    Metadata
    Show full item record
    Abstract
    Complexity, uncertainty, and high dynamic nature of nutrient removal through biological processes (BPs) makes it difficult to model and control these processes, forcing designers to rely on approximations, probabilities, and assumptions. To cope with this difficult task and perform an effective and well-controlled BP operation, an artificial neural network (ANN) algorithm was developed to simulate, model, and control a three-stage (anaerobic/anoxic and MBBR) enhanced nutrient removal biological process (ENR-BP) challenging real wastewater. The effect of surface area loading rate (SALR), organic matters (OMs), nutrients (N & P), feed flow rate (Qfeed), hydraulic retention time (HRT), and internal recycle flow (IRF) on the performance of the ENR-BP to fulfil rigorous discharge limitations were evaluated. Experimental data was used to develop the appropriate architecture for the AAN using iterative steps of training and testing. Significant removals of chemical oxygen demand (COD) (89.2 to 98.3%), NH4+ (88.5 to 98.9%), and total phosphorus (TP) (77.9 to 99.9%) were achieved at a total HRT of 13.3 h (HRTZ-1 = 3 h, HRTZ-2 = 6 h and HRTZ-3 = 5.3 h) and an IRF value of 1.75. The ENR-BP treatment mechanism relies on the use of OMs as a source of energy for phosphorus bio-uptake and the simultaneous nitrification and denitrification (SND) of nitrogen compounds. The removal efficiencies in the proposed ENR-BP were four fold higher than the suspended growth process and in the same order of magnitude of 5-stage Bardenpho-MBBR. The developed ANN-based model provides an efficient and robust tool for predicting and forecasting the performance of the ENR-BP.
    DOI/handle
    http://dx.doi.org/10.1016/j.scitotenv.2020.140854
    http://hdl.handle.net/10576/30310
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video