• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of fuel ratio on the performance of combustion synthesized bifunctional cobalt oxide catalysts for fuel cell application

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Ashok A.
    Kumar A.
    Bhosale R.R.
    Almomani F.
    Saleh Saad M.A.H.
    Suslov S.
    Tarlochan F.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Solution combustion synthesis was used to prepare cobalt oxide nanoparticles at different fuel ratio (φ = 0.5, 1, and 1.75). The synthesized particles were characterized using XRD, SEM, TEM, FTIR and XPS to study the morphological and structural features. The fuel rich condition provides a reducing atmosphere limiting further oxidation of synthesized nanoparticles but produces more carbon residue on the catalyst surface compared to fuel lean conditions. Increasing the fuel ratio (φ value) from 0.5 to 1.75 increases the crystallite size and lowers the surface area. The electrocatalytic performance studies conducted by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) indicate significant changes in catalytic activities due to variation in synthesis conditions. The LSV results obtained between potential of −1.2 V and 0.75 V shows all the three cobalt oxide catalysts to have bifunctional properties of being active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), with Co synthesized at lower fuel ratio (φ = 0.5) displaying the highest current density. The onset potential for Co (φ = 0.5) is more positive than Co (φ = 1) and Co (φ = 1.75). The kinetic current density for Co (φ = 0.5) is 6.45 mA cm−2 and decreases with increase in fuel ratio. The OER current starts at ∼0.45 V for all the catalysts showing maximum density for Co (φ = 0.5) and gradually decreasing for catalysts synthesized at higher fuel ratio.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2018.02.111
    http://hdl.handle.net/10576/30334
    Collections
    • Chemical Engineering [‎1201‎ items ]
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video