• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solar reactor efficiency analysis for alternative fuel production via ferrite based two-step thermochemical splitting of water and CO2

    Thumbnail
    Date
    2015
    Author
    Bhosale R.
    Kumar A.
    AlMomani F.A.
    Dardor D.
    Ali M.H.
    Gharbia S.
    Jilani M.
    Yousefi S.
    AlNouss A.
    Anis M.S.
    Usmani M.H.
    Ali M.Y.
    Bouabidi Z.B.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this paper computational thermodynamic modeling of solar syngas production via ferrite based (Fe3 O4 /FeO) thermochemical H2O and/or CO2 splitting cycle. This two-step cycle involves solar thermal reduction of Fe3O4 into FeO and O2 and non-solar splitting of H2O and CO2 via exothermic oxidation of FeO into Fe3O4. Solar syngas produced will be used for the production of solar liquid transportation fuels by catalytic Fischer Tropsch process. This paper reports the solar reactor efficiency analysis for the iron oxide based solar syngas production process. Second-law thermodynamic analysis is applied to determine the cycle efficiencies attainable with and without heat recuperation. Also, the energy required for the inert Ar heating during the solar thermal reduction step was included during the efficiency calculation. Thermodynamic analysis has been performed and the analysis shows that solar syngas production via the Iron Oxide redox cycle is a promising approach for CO2/H2O conversion into alternative fuels.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969150906&partnerID=40&md5=9e46ee5e5f8ea3d7913336a2e5315a00
    DOI/handle
    http://hdl.handle.net/10576/30351
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video