• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ab Initio molecular dynamics of the dissolution of oilfield pyrite scale using borax

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Onawole A.T.
    Hussein I.A.
    Ahmed M.E.M.
    Saad M.A.
    Aparicio S.
    Metadata
    Show full item record
    Abstract
    Iron sulfide scales, particularly pyrite, form in oil and gas underground tubing and surface equipment thus blocking the flow of fluids and halting production. Therefore, the development of physicochemical processes for scale removal is of pivotal relevance. In this work, Ab Initio Molecular dynamics simulations have been employed to investigate the use of borax as a scale removal agent and understand the molecular level features in the dissolution of pyrite using a borax solution. Geometry analysis, radial distribution function, and near neighbor analysis tools have been used to analyze the data. The reported results show that potassium ion is preferentially bonding with the sulfur atoms in the top layer of the pyrite surface rather than with iron, thus being the predominant factor that accounts for pyrite dissolution. The K[sbnd]S bonds evolve dynamically exposing the whole pyrite surface. The presence of the chelating agent would prevent the formation of Fe[sbnd]S bonds. It is proposed that borax, in conjunction with chelating agents, could be used for removing the pyrite scale and consequently boosting production in the upstream sector.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078154117&doi=10.1016%2fj.molliq.2020.112500&partnerID=40&md5=be0c3fca52cd2a3d3cb3cf25ef7ebec7
    DOI/handle
    http://dx.doi.org/10.1016/j.molliq.2020.112500
    http://hdl.handle.net/10576/30411
    Collections
    • Chemical Engineering [‎1202‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video