• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A New Forensic Video Database for Source Smartphone Identification: Description and Analysis

    Thumbnail
    Date
    2022
    Author
    Akbari, Y.
    Al-Maadeed, Somaya
    Almaadeed, N.
    Najeeb, A.A.
    Al-ali, A.
    Khelifi, F.
    Lawgaly, A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In recent years, the field of digital imaging has made significant progress, so that today every smartphone has a built-in video camera that allows you to record high-quality video for free and without restrictions. On the other hand, rapidly growing internet technology has contributed significantly to the widespread use of digital video via web-based multimedia systems and mobile smartphone applications such as YouTube, Facebook, Twitter, WhatsApp, etc. However, as the recording and distribution of digital videos have become affordable nowadays, security issues have become threatening and spread worldwide. One of the security issues is identifying source cameras on videos. There are some new challenges that should be addressed in this area. One of the new challenges is individual source camera identification (ISCI), which focuses on identifying each device regardless of its model. The first step towards solving the problems is a popular video database recorded by modern smartphone devices, which can also be used for deep learning methods that are growing rapidly in the field of source camera identification. In this paper, a smartphone video database named Qatar University Forensic Video Database (QUFVD) is introduced. The QUFVD includes 6000 videos from 20 modern smartphone representing five brands, each brand has two models, and each model has two identical smartphone devices. This database is suitable for evaluating different techniques such as deep learning methods for video source smartphone identification and verification. To evaluate the QUFVD, a series of experiments to identify source cameras using a deep learning technique are conducted. The results show that improvements are essential for the ISCI scenario on video.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2022.3151406
    http://hdl.handle.net/10576/31078
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...
    • Thumbnail

      A cooperative Q-learning approach for online power allocation in femtocell networks 

      Saad H.; Mohamed A.; Elbatt T. ( IEEE , 2013 , Conference)
      In this paper, we address the problem of distributed interference management of cognitive femtocells that share the same frequency range with macrocells using distributed multiagent Q-learning. We formulate and solve three ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video