• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Drone-SCNet: Scaled Cascade Network for Crowd Counting on Drone Images

    Thumbnail
    Date
    2021
    Author
    Elharrouss O.
    Almaadeed N.
    Abualsaud K.
    Al-Ali A.
    Mohamed A.
    Khattab T.
    Al-Maadeed, Somaya
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Crowd management is an essential task to ensure the safety and smoothness of any event. Using novel technologies, including surveillance cameras, drones, and the communication techniques between security agents, the control of the crowd has become easier. Yet, the usage of such techniques is still not effective. This article presents an approach for crowd counting from drones' data. The proposed method exploits the dilated and scaled neural networks for feature extraction and density crowd estimation. A new dataset named ViseDrone2020 is used for training and testing of the proposed method. In order to compare the proposed method, we implemented 10 state-of-the-art methods and trained it on this dataset. The experiments show that the proposed model is more efficient for crowd counting compared with the implemented methods. Also, some of these methods give relatively accurate results in terms of estimated crowd numbers as well as the quality of estimated density maps. The proposed model was further evaluated on nondrone datasets, namely, UCF_QNRF, UCF_CC_50, and shanghaiTech_(A, B), which produced satisfying results for all the datasets. In addition, the proposed method was tested on noisy images where Gaussian noise and salt-and-pepper noise was applied to all the images of the dataset with a noise density of 0.02. The analysis showed that the quality of the density map as well as the quantity of the crowd count estimation is comparatively better than other existing methods without the presence of noise. After the acceptance, the code of the proposed method as well as 10 implemented methods will be available at: [Online]. Available: https://github.com/elharroussomar/Crowd-Conting-on-Drone-Data.
    DOI/handle
    http://dx.doi.org/10.1109/TAES.2021.3087821
    http://hdl.handle.net/10576/31083
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video